
International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015                                                                                             1634 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org 

BAYESIAN ESTIMATION OF POPULATION PROPORTION OF A STIGMATIZED ATTRIBUTE USING A 
FAMILY OF ALTERNATIVE BETA PRIORS 

 

*Adepetun, A.O.(1)& Adewara, A.A. (2) 

1Department of Statistics, Federal University of Technology, PMB 704, Akure, Ondo State, Nigeria 

2Department of Statistics, University of Ilorin, PMB 1515, Ilorin, Kwara State, Nigeria 

*Corresponding Author:- akinolaoladiran@yahoo.com 

Email: akinolaoladiran@yahoo.com, aaadewara@gmail.com 

Abstract 

In this study, we have developed the Bayes estimators of the population proportion of a stigmatized attribute when data were 
gathered through the randomized response technique (RRT) put forward by Hussain and Shabbir [9]. Using both the 
Kumaraswamy (KUMA) and the Generalised (GLS) beta distributions as a family of alternative beta priors, superiority of the 
derived Bayes estimators was established for a large interval of the values of the population proportion. We observed that for 
small, moderate as well as large sample sizes, the alternative Bayes estimators were better than the Bayes estimator proposed by 
Hussain and Shabbir [10] when a simple beta prior was used. 
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1. Introduction 
Direct interrogation about a stigmatized attribute such as induced abortion, use of drug, tax evasion, etc. in a human population 
survey is a difficult exercise. A sampler may receive wrong answers from the survey respondents when he/she uses direct 
interrogating approach. Due to many reasons, information about prevalence of stigmatized attributes, in the population, is 
essential. Warner [24] was the first to propose a complicated method of survey to gather information in relation to stigmatized 
attributes by ensuring confidentiality and anonymity to the respondents. Up till now, a vast number of developments and 
improvements on Warner’s Randomized Response Technique (RRT) have been developed by several researchers. Greenberg et al. 
[8], Mangat and Singh [16], Mangat [15], Singh et al. [21], Christofides [7], Kim and Warde [14], Adebola and Adepetun [2], 
Adebola and Adepetun [3], Adepetun and Adebola [4] are some of the many to be listed. In some situations, prior information 
about the unknown parameter may be available and can be used along with the sample auxiliary information for determination of 
that unknown parameter known as the Bayesian approach of estimation. Work done by researchers on Bayesian analysis of 
Randomized response models are not very much, nevertheless, attempts have been made on the Bayesian analysis of Randomized 
response techniques. Winkler and Franklin [25], Pitz [20], Spurrier and Padgett [22], O’Hagan [18], Oh [19], Migon and 
Tachibana [17], Unnikrishnan and Kunte [23], Bar-Lev and Bobovich [5], Barabesi and Marcheselli [6], Kim et al. [13],  Hussain 
and Shabbir [10,11], Hussain and Shabbir [12], Adepetun and Adewara [1], are the major references on the Bayesian analysis of 
the Randomized Response Techniques. The paper is arranged as follows. In Section 2, we present Hussain and Shabbir [10] 
Randomized Response Technique (RRT) followed by our proposed alternative Bayesian estimation of population proportion in 
section 3. Section 4 contains the numerical consideration and comparison of results while section 5 is the conclusion. 
 
2. The Existing Bayesian Technique of Estimation 
Hussain and Shabbir [10] in their referred paper presented a Bayesian estimation to the Randomized Response Technique (RRT) 
proposed by Hussain and Shabbir [9] using a simple beta prior distribution to estimate the population proportion of respondents 
possessing stigmatized attribute. 
Assume the simple beta prior is defined as follows  

𝑓(𝜋) = 1
𝐵(𝑎,𝑏)𝜋

𝑎−1(1− 𝜋)𝑏−1  ;   0 < 𝜋 < 1         (1) 

where (𝑎,𝑏) are the shape parameters of the distribution and 𝜋 is the population proportion of respondents possessing the 
stigmatized attribute. 

Let 𝑋 =  ∑𝑥𝑖 be the total number of the yes response in a sample of size n selected from the population with simple random 
sampling with replacement sampling. Then the conditional distribution of X given 𝜋  is  

𝑓(𝑋|𝜋) =
𝑛!

𝑥! (𝑛 − 𝑥)! 
𝜙𝑥(1−𝜙)𝑛−𝑥                                                                                                                                                 (2) 

where 𝜙 is the probability of “yes response” to the stigmatized attribute which is defined as 

𝜙 =
𝛼

𝛼 + 𝛽
�𝑃1𝜋 + (1 −𝑃1)(1 − 𝜋)� +

𝛽
𝛼 + 𝛽

�𝑃2𝜋 + (1− 𝑃2)(1 − 𝜋)�                                                                                (3) 

where 𝑃1 is the preset probability of “yes” response to the stigmatized attribute and (𝛼,𝛽) are non-zero constants such that  
𝑃1 + 𝑃2 = 1 respectively 

𝑓(𝑋|𝜋) = �
𝑛
𝑥
��
𝜋�(2𝑃1 − 1)(𝛼 − 𝛽)) + 𝛽𝑃1 + 𝛼𝑃2�

𝛼 + 𝛽
�
𝑥

�1−
𝜋�(2𝑃1 − 1)(𝛼 − 𝛽)) + 𝛽𝑃1 + 𝛼𝑃2�

𝛼 + 𝛽
�
𝑛−𝑥

 

On simplification, we have  

𝑓(𝑋|𝜋) = �
𝑛
𝑥
��
�(2𝑃1 − 1)(𝛼 − 𝛽)�

𝛼 + 𝛽
�
𝑛

(𝜋 + 𝐹)𝑥(1− 𝜋 + 𝐻)𝑛−𝑥 

where 𝐹 = 𝛽𝑃1+𝛼𝑃2
(2𝑃1−1)(𝛼−𝛽)

;    𝐻 = 3𝑃1(𝛽−𝛼)+3𝛼
(2𝑃1−1)(𝛼−𝛽)

 

Letting  𝐴 = �𝑛𝑥� �
�(2𝑃1−1)(𝛼−𝛽)�

𝛼+𝛽
�
𝑛
 

𝑓(𝑋|𝜋) = 𝐴���
𝑥
𝑖
� �
𝑛 − 𝑥
𝑗

�𝐹𝑥−𝑖𝐻𝑛−𝑥−𝑗𝜋𝑖(1− 𝜋)𝑗
𝑛−𝑥

𝑗=0

𝑥

𝑖=0

                                                                                                          (4) 

for x = 0,1,2,…,n 
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 Thus, the joint probability density functions (pdf) of X and 𝜋  is  

𝑓(𝑋,𝜋) = 𝐷���
𝑥
𝑖
� �
𝑛 − 𝑥
𝑗

� 𝐹𝑥−𝑖𝐻𝑛−𝑥−𝑗𝜋𝑖𝜋𝑎−1(1− 𝜋)𝑗
𝑛−𝑥

𝑗=0

𝑥

𝑖=0

(1− 𝜋)𝑏−1                                                                           (5) 

where 𝐷 = �𝑛𝑥�

𝐵(𝑎,𝑏)
��(2𝑃1−1)(𝛼−𝛽)�

𝛼+𝛽
�
𝑛

 

Now the marginal distribution of X can be obtained by integrating the joint distribution of X and π over π. Thus the marginal 
distribution of X is given by 

𝑓(𝑋) = � 𝑓𝑔(𝑋,𝜋)
1

0
𝑑𝜋 = 𝐷���

𝑥
𝑖
� �
𝑛 − 𝑥
𝑗

� 𝐹𝑥−𝑖𝐻𝑛−𝑥−𝑗
𝑛−𝑥

𝑗=0

𝑥

𝑖=0

� 𝜋𝑎−1+𝑖(1− 𝜋)𝑏−1+𝑗
1

0
𝑑𝜋 

𝑓(𝑋) = 𝐷���
𝑥
𝑖
� �
𝑛 − 𝑥
𝑗

� 𝐹𝑥−𝑖𝐻𝑛−𝑥−𝑗
𝑛−𝑥

𝑗=0

𝑥

𝑖=0

𝐵(𝑎 + 𝑖,𝑏 + 𝑗)                                                                                                      (6) 

The posterior distribution of 𝜋 given X is defined as 

𝑓(𝜋|𝑋) =
𝑓(𝑋,𝜋)
𝑓(𝑋)                                                                                                                                                                                (7) 

𝑓(𝜋|𝑋) =
∑ ∑ �𝑥𝑖� �

𝑛−𝑥
𝑗 � 𝐹

𝑥−𝑖𝐻𝑛−𝑥−𝑗𝜋𝑎−1+𝑖(1− 𝜋)𝑏−1+𝑗𝑛−𝑥
𝑗=0

𝑥
𝑖=0

∑ ∑ �𝑥𝑖� �
𝑛−𝑥
𝑗 �𝐹

𝑥−𝑖𝐻𝑛−𝑥−𝑗𝑛−𝑥
𝑗=0

𝑥
𝑖=0 𝐵(𝑎 + 𝑖, 𝑏 + 𝑗)

                                                                                           (8) 

Under the squared error loss function, the Bayes estimator of π which is the posterior mean of (8) is given by 

𝜋�𝑆𝐻 = � 𝜋
1

0
𝑓(𝜋|𝑋)𝑑𝜋 =

∑ ∑ �𝑥𝑖� �
𝑛−𝑥
𝑗 � 𝐹

𝑥−𝑖𝐻𝑛−𝑥−𝑗𝑛−𝑥
𝑗=0

𝑥
𝑖=0 ∫ 𝜋𝑎+𝑖(1 − 𝜋)𝑏+𝑗−11

0 𝑑𝜋

∑ ∑ �𝑥𝑖� �
𝑛−𝑥
𝑗 �𝐹

𝑥−𝑖𝐻𝑛−𝑥−𝑗𝑛−𝑥
𝑗=0

𝑥
𝑖=0 𝐵(𝑎 + 𝑖,𝑏 + 𝑗)

 

 =
∑ ∑ �𝑥𝑖� �

𝑛−𝑥
𝑗 � 𝐹

𝑥−𝑖𝐻𝑛−𝑥−𝑗𝑛−𝑥
𝑗=0

𝑥
𝑖=0 𝐵(𝑎 + 𝑖 + 1,𝑏 + 𝑗)

∑ ∑ �𝑥𝑖� �
𝑛−𝑥
𝑗 � 𝐹

𝑥−𝑖𝐻𝑛−𝑥−𝑗𝑛−𝑥
𝑗=0

𝑥
𝑖=0 𝐵(𝑎 + 𝑖,𝑏 + 𝑗)

                                                                                                        (9) 

The Bias of 𝜋�𝑆𝐻 as well as its Mean Square Error (MSE) is given by 

𝐵(𝜋�𝑆𝐻) = 𝜋�𝑆𝐻 −  𝜋                                                                                                                                                                         (10) 

𝑀𝑆𝐸(𝜋�𝑆𝐻) = �(𝜋�𝑆𝐻 − 𝜋)2𝜙𝑥(1− 𝜙)𝑛−𝑥
𝑛

𝑥=0

                                                                                                                            (11) 

3. The Proposed Alternative Bayesian Techniques of Estimation 

Here, we present an alternative Bayesian estimation to Hussain and Shabbir [9] Randomized Response Technique using both the 
Kumaraswamy (KUMA) and the Generalised (GLS) beta prior distributions as our family of alternative beta prior distributions in 
addition to the simple beta prior distribution used by Hussain and Shabbir [10]. 
3.1.1 Estimation of 𝜋 using Kumaraswamy prior 

The Kumaraswamy prior distribution of 𝜋  is given as 

𝑓(𝜋) = 𝑏𝑐𝜋𝑐−1(1 − 𝜋𝑐)𝑏−1  ; 𝑏, 𝑐 > 0                                                                                                                                     (12)  

Using the Kumaraswamy prior in (12), the joint probability density function of X and 𝜋 is derived as  

𝑓(𝑋,𝜋) = 𝑎𝑏𝐸∑ ∑ �𝑥𝑖� �
𝑛−𝑥
𝑗 �𝐹

𝑥−𝑖𝐻𝑛−𝑥−𝑗𝜋𝑖(1− 𝜋)𝑗𝑛−𝑥
𝑗=0

𝑥
𝑖=0 (1 − 𝜋𝑐)𝑏−1𝜋𝑐−1                                                                (13) 

where 𝐸 = �𝑛𝑥� �
�(2𝑃1−1)(𝛼−𝛽)�

𝛼+𝛽
�
𝑛
 

The marginal probability density function (pdf) of X can be obtained as  
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𝑓(𝑋) = � 𝑓(𝑋,𝜋)
1

0
𝑑𝜋                                                                                                                                                                     (14) 

= 𝑎𝑏𝐸���(−1)𝑘 �
𝑥
𝑖
� �
𝑛 − 𝑥
𝑗

� �
𝑏 − 1
𝑘

�
𝑏−1

𝑘=0

𝐹𝑥−𝑖𝐻𝑛−𝑥−𝑗 � (1 − 𝜋)𝑗
1

0
𝜋𝑐𝑘+𝑖+𝑐−1𝑑𝜋 

𝑛−𝑥

𝑗=0

𝑥

𝑖=0

 

= 𝑎𝑏𝐸���(−1)𝑘 �
𝑥
𝑖
� �
𝑛 − 𝑥
𝑗

� �
𝑏 − 1
𝑘

�
𝑏−1

𝑘=0

𝐹𝑥−𝑖𝐻𝑛−𝑥−𝑗𝐵(𝑐𝑘 + 𝑐 + 𝑖, 𝑗 + 1)                                                          (15) 
𝑛−𝑥

𝑗=0

𝑥

𝑖=0

 

Similarly, the posterior distribution as usual is obtained as follows 

  𝑓(𝜋|𝑋)  =
∑ ∑ ∑ (−1)𝑘�𝑥𝑖� �

𝑛−𝑥
𝑗 � �

𝑏−1
𝑘 �

𝑏−1
𝑘=0 𝐹𝑥−𝑖𝐻𝑛−𝑥−𝑗(1− 𝜋)𝑗𝜋𝑐𝑘+𝑖+𝑐−1𝑛−𝑥

𝑗=0
𝑥
𝑖=0

∑ ∑ ∑ (−1)𝑘�𝑥𝑖� �
𝑛−𝑥
𝑗 � �

𝑏−1
𝑘 �

𝑏−1
𝑘=0 𝐹𝑥−𝑖𝐻𝑛−𝑥−𝑗𝐵(𝑐𝑘 + 𝑐 + 𝑖, 𝑗 + 1)𝑛−𝑥

𝑗=0
𝑥
𝑖=0

                                                   (16) 

Under the Square error loss, we proceed to obtain the posterior mean which is the Bayes estimator as follows 

𝜋�𝐾𝐻 = � 𝜋
1

0
𝑓(𝜋|𝑋)𝑑𝜋                                                                                                                                                                   (17) 

Considering the fact that 

� 𝜋
1

0
(1 − 𝜋)𝑗𝜋𝑐𝑘+𝑖+𝑐−1𝑑𝜋 = � 𝜋𝑐𝑘+𝑖+𝑐

1

0
(1 − 𝜋)𝑗𝑑𝜋 = 𝐵(𝑐𝑘 + 𝑖 + 𝑐 + 1, 𝑗 + 1) 

Therefore, 

𝜋�𝐾𝐻 =
∑ ∑ ∑ (−1)𝑘�𝑥𝑖� �

𝑛−𝑥
𝑗 � �

𝑏−1
𝑘 �𝑏−1

𝑘=0 𝐹𝑥−𝑖𝐻𝑛−𝑥−𝑗𝑛−𝑥
𝑗=0

𝑥
𝑖=0 𝐵(𝑐𝑘 + 𝑖 + 𝑐 + 1, 𝑗 + 1)

∑ ∑ ∑ (−1)𝑘�𝑥𝑖� �
𝑛−𝑥
𝑗 � �

𝑏−1
𝑘 �

𝑏−1
𝑘=0 𝐹𝑥−𝑖𝐻𝑛−𝑥−𝑗𝐵(𝑐𝑘 + 𝑖 + 𝑐, 𝑗 + 1)𝑛−𝑥

𝑗=0
𝑥
𝑖=0

                                                 (18) 

As a result, the Bias of 𝜋�𝐾𝐻  as well as its Mean Square Error is also given by 

𝐵(𝜋�𝐾𝐻) = 𝜋�𝐾𝐻 − 𝜋                                                                                                                                                                       (19) 

𝑀𝑆𝐸(𝜋�𝐾𝐻) = �(𝜋�𝐾𝐻 − 𝜋)2𝜙𝑥(1− 𝜙)𝑛−𝑥
𝑛

𝑥=0

                                                                                                                         (20) 

3.1.2 Estimation of 𝜋 using Generalised Beta prior 
The Generalised Beta prior is defined as  

𝑓(𝜋) =
𝑐

𝐵(𝑎,𝑏)𝜋
𝑎𝑐−1(1− 𝜋𝑐)𝑏−1;    𝑎,𝑏, 𝑐 > 0                                                                                                                    (21) 

where 𝑎, 𝑏, 𝑐 are the shape parameters of the prior distribution as given in equation (21) 

By binomial series expansion, we know that 

(1 − 𝜋𝑐)𝑏−1 = �(−1)𝑘 �
𝑏 − 1
𝑘

�
𝑏−1

𝑘=0

(𝜋𝑐)𝑘 

consequently 

𝑓(𝜋) =
𝑐

𝐵(𝑎,𝑏)�
(−1)𝑘 �

𝑏 − 1
𝑘

�
𝑏−1

𝑘=0

𝜋𝑐(𝑘+𝑎)−1 

As a result, the joint density function of 𝜋 and X with Generalized beta prior is  

𝑓(𝑋,𝜋) = 𝐺���(−1)𝑘 �
𝑥
𝑖
� �
𝑛 − 𝑥
𝑗

� �
𝑏 − 1
𝑘

�
𝑏−1

𝑘=0

𝐹𝑥−𝑖𝐻𝑛−𝑥−𝑗(1− 𝜋)𝑗𝜋𝑐(𝑎+𝑘)+𝑖−1
𝑛−𝑥

𝑗=0

𝑥

𝑖=0

                                             (22) 
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where 

𝐺 =
𝑐

𝐵(𝑎, 𝑏)�
𝑛
𝑥
� �
�(2𝑃1 − 1)(𝛼 − 𝛽)�

𝛼 + 𝛽
�
𝑛

 

The marginal probability density function (pdf) of X can then be obtained from (22) as 

𝑓(𝑋) = � 𝑓(𝑋,𝜋)
1

0
𝑑𝜋                                                                                                                                                                                (23) 

= 𝐺���(−1)𝑘 �
𝑥
𝑖
� �
𝑛 − 𝑥
𝑗

� �
𝑏 − 1
𝑘

�
𝑏−1

𝑘=0

𝐹𝑥−𝑖𝐻𝑛−𝑥−𝑗𝐵(𝑐(𝑘 + 𝑎) + 𝑖, 𝑗 + 1)                                                                       (24)
𝑛−𝑥

𝑗=0

𝑥

𝑖=0

 

Similarly, we obtained the posterior distribution of 𝜋 given X as  

𝑓(𝜋|𝑋) =
∑ ∑ ∑ (−1)𝑘�𝑥𝑖� �

𝑛−𝑥
𝑗 � �

𝑏−1
𝑘 �

𝑏−1
𝑘=0 𝐹𝑥−𝑖𝐻𝑛−𝑥−𝑗(1− 𝜋)𝑗𝜋𝑐(𝑎+𝑘)+𝑖−1𝑛−𝑥

𝑗=0
𝑥
𝑖=0

∑ ∑ ∑ (−1)𝑘�𝑥𝑖� �
𝑛−𝑥
𝑗 � �

𝑏−1
𝑘 �

𝑏−1
𝑘=0 𝐹𝑥−𝑖𝐻𝑛−𝑥−𝑗𝐵(𝑐(𝑘 + 𝑎) + 𝑖, 𝑗 + 1)𝑛−𝑥

𝑗=0
𝑥
𝑖=0

                                                             (25) 

In the same manner, under the square error loss, the posterior mean which is otherwise known as the Bayes estimator is given by 

𝜋�𝐺𝐻 =
∑ ∑ ∑ (−1)𝑘�𝑥𝑖� �

𝑛−𝑥
𝑗 � �

𝑏−1
𝑘 �𝑏−1

𝑘=0 𝐹𝑥−𝑖𝐻𝑛−𝑥−𝑗𝑛−𝑥
𝑗=0

𝑥
𝑖=0 𝐵(𝑐(𝑘 + 𝑎) + 𝑖 + 1, 𝑗 + 1)

∑ ∑ ∑ (−1)𝑘�𝑥𝑖��
𝑛−𝑥
𝑗 � �

𝑏−1
𝑘 �

𝑏−1
𝑘=0 𝐹𝑥−𝑖𝐻𝑛−𝑥−𝑗𝐵(𝑐(𝑘 + 𝑎) + 𝑖, 𝑗 + 1)𝑛−𝑥

𝑗=0
𝑥
𝑖=0

                                                         (26) 

The Bias of 𝜋�𝐺𝐻 and its Mean Square Error (MSE) are respectively given by 

𝐵(𝜋�𝐺𝐻) = 𝜋�𝐺𝐻 − 𝜋                                                                                                                                                                                  (27) 

𝑀𝑆𝐸(𝜋�𝐺𝐻) = �(𝜋�𝐺𝐻 − 𝜋)2 
𝑛

𝑥=0

𝜙𝑥(1−𝜙)𝑛−𝑥                                                                                                                                    (28) 

4. Numerical consideration and comparison of Results 

Here, we present the numerical consideration as well as comparative study of our results with the existing Hussain and Shabbir 

[10].  In order to determine the Absolute Biases and the associated Mean Square Errors (MSEs) of both the conventional and the 

proposed estimators, we assume the values of the parameters in the priors as beta (a=2,b=3,c=1); Kuma (a=1,b=3,c=4) ;GLS 

(a=2,b=3,c=4) at various selected sample sizes. To surmount the associated computational complexity and generate these results, 

we wrote computer programs using R-statistical software. To save a considerable number of spaces, we present few results in 

tables and figures as follows: 

Table 1a- Table showing the Mean Square Errors (MSEs) for Hussain and Shabbir [9] RRT at 𝑛 = 25, 𝑥 = 15,𝛼 = 1, 𝛽 =
10, 𝑃1 = 0.1,𝑃2 = 0.9 

𝜋 MSE BETA MSE KUMA MSE GLS 
0.1 5.808662E-09 1.812328E-08 2.604882E-08 
0.2 2.917126E-09 1.263793E-08 1.937450E-08 
0.3 1.011638E-09 8.138637E-09 1.368623E-08 
0.4 9.220036E-11 4.625392E-09 8.984007E-09 
0.5 1.588118E-10 2.098197E-09 5.267834E-09 
0.6 1.211473E-09 5.570505E-10 2.537710E-09 
0.7 3.250183E-09 1.953728E-12 7.936349E-10 
0.8 6.274943E-09 4.329063E-10 3.560946E-11 
0.9 1.028575E-08 1.849908E-09 2.636334E-10 
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Table 1b- Table showing the Absolute Bias for Hussain and Shabbir [9] RRT at 𝑛 = 25, 𝑥 = 15,𝛼 = 1, 𝛽 = 10, 𝑃1 = 0.1, 𝑃2 =
0.9 

𝜋 |BIAS|BETA |BIAS| KUMA |BIAS| GLS 

0.1 0.34324461 0.60629503 0.72687499 
0.2 0.24324461 0.50629503 0.62687499 
0.3 0.14324461 0.40629503 0.52687499 
0.4 0.04324461 0.30629503 0.42687499 
0.5 0.05675539 0.20629503 0.32687499 
0.6 0.15675539 0.10629503 0.22687499 
0.7 0.25675539 0.00629503 0.12687499 
0.8 0.35675539 0.09370497 0.02687499 
0.9 0.45675539 0.19370497 0.07312501 
 

Figure 1a- Graph showing the Mean Square Errors (MSEs) for Hussain and Shabbir [9] RRT at 𝑛 = 25,𝑥 = 15,𝛼 = 1, 𝛽 = 10,
𝑃1 = 0.1,𝑃2 = 0.9 
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Figure 1b- Graph showing the Absolute Bias for Hussain and Shabbir [9] RRT at 𝑛 = 25, 𝑥 = 15,𝛼 = 1, 𝛽 = 10, 𝑃1 = 0.1,
𝑃2 = 0.9 

 

Table 2a- Table showing the Mean Square Errors (MSEs) for Hussain and Shabbir (2007) RRT at 𝑛 = 25,𝑥 = 15,𝛼 = 1, 𝛽 =
10,𝑃1 = 0.2,𝑃2 = 0.8 

𝜋 MSE BETA MSE KUMA MSE GLS 
0.1 5.350364E-09 2.139775E-08 2.903802E-08 
0.2 2.595090E-09 1.539474E-08 2.196363E-08 
0.3 8.258649E-10 1.037778E-08 1.587528E-08 
0.4 4.268932E-11 6.346865E-09 1.077298E-08 
0.5 2.455631E-10 3.302003E-09 6.656737E-09 
0.6 1.434486E-09 1.243190E-09 3.526539E-09 
0.7 3.609459E-09 1.704262E-10 1.382391E-09 
0.8 6.770481E-09 8.371190E-11 2.242912E-10 
0.9 1.091755E-08 9.830470E-10 5.224118E-11 
 

Table 2b- Table showing the Absolute Bias for Hussain and Shabbir (2007) RRT at 𝑛 = 25,𝑥 = 15,𝛼 = 1, 𝛽 = 10,𝑃1 =
0.2,𝑃2 = 0.8 

𝜋 |BIAS|BETA |BIAS| KUMA |BIAS| GLS 

0.1 0.32942560 0.65879411 0.76744841 
0.2 0.22942560 0.55879411 0.66744841 
0.3 0.12942560 0.45879411 0.56744841 
0.4 0.02942560 0.35879411 0.46744841 
0.5 0.07057440 0.25879411 0.36744841 
0.6 0.17057440 0.15879411 0.26744841 
0.7 0.27057440 0.05879411 0.16744841 
0.8 0.37057440 0.04120589 0.06744841 
0.9 0.47057440 0.14120589 0.03255159 
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Figure 2a- Graph showing the Mean Square Errors (MSEs) for Hussain and Shabbir (2007) RRT at 𝑛 = 25, 𝑥 = 15,𝛼 = 1, 𝛽 =
10,𝑃1 = 0.2,𝑃2 = 0.8 

 

 

Figure 2b- Graph showing the Absolute Bias for Hussain and Shabbir (2007) RRT at 𝑛 = 25,𝑥 = 15,𝛼 = 1, 𝛽 = 10,𝑃1 =
0.2,𝑃2 = 0.8 
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Comment: When 𝑛 = 25,𝑃1 = 0.1, 0.2, the conventional estimator only perform averagely when 𝜋 lies between 0.1 and 0.5 while 
the proposed estimators perform significantly better in obtaining higher and truthful responses from respondents when 𝜋 lies 
between 0.6 and 0.9 respectively. 
 

 

Table 3a- Table showing the Mean Square Errors (MSEs) for Hussain and Shabbir [9] RRT at 𝑛 = 100, 𝑥 = 60,𝛼 = 1, 𝛽 = 10,
𝑃1 = 0.1, 𝑃2 = 0.9 

𝜋 MSE BETA MSE KUMA MSE GLS 
0.1 8.418124E-31 1.297804E-30 1.718592E-30 
0.2 4.548558E-31 8.030642E-31 1.140362E-30 
0.3 1.860685E-31 4.264941E-31 6.803017E-31 
0.4 3.545060E-32 1.680933E-31 3.384106E-31 
0.5 3.001950E-33 2.786176E-32 1.146888E-31 
0.6 8.872260E-32 5.799571E-33 9.136300E-33 
0.7 2.926126E-31 1.019067E-31 2.175311E-32 
0.8 6.146718E-31 3.161831E-31 1.525392E-31 
0.9 1.054900E-30 6.486288E-31 4.014946E-31 
 

Table 3b- Table showing the Absolute Bias for Hussain and Shabbir [9] RRT at 𝑛 = 100, 𝑥 = 60,𝛼 = 1, 𝛽 = 10, 𝑃1 = 0.1,
𝑃2 = 0.9 

𝜋 |BIAS|BETA |BIAS| KUMA |BIAS| GLS 

0.1 0.37745946 0.46866999 0.53932311 
0.2 0.27745946 0.36866999 0.43932311 
0.3 0.17745946 0.26866999 0.33932311 
0.4 0.07745946 0.16866999 0.23932311 
0.5 0.02254054 0.06866999 0.13932311 
0.6 0.12254054 0.03133001 0.03932311 
0.7 0.22254054 0.13133001 0.06067689 
0.8 0.32254054 0.23133001 0.16067689 
0.9 0.42254054 0.33133001 0.26067689 
 

Figure 3a- Graph showing the Mean Square Errors (MSEs) for Hussain and Shabbir [9] RRT at 𝑛 = 100,𝑥 = 60,𝛼 = 1, 𝛽 = 10,
𝑃1 = 0.1, 𝑃2 = 0.9 
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Figure 3b- Graph showing the Absolute Bias for Hussain and Shabbir [9] RRT at 𝑛 = 100, 𝑥 = 60,𝛼 = 1, 𝛽 = 10, 𝑃1 = 0.1,
𝑃2 = 0.9 

 

Table 4a- Table showing the Mean Square Errors (MSEs) for Hussain and Shabbir (2007) RRT at 𝑛 = 100,𝑥 = 60,𝛼 = 1, 𝛽 =
10, 𝑃1 = 0.2, 𝑃2 = 0.8 

𝜋 MSE BETA MSE KUMA MSE GLS 
0.1 7.847912E-31 1.550351E-30 2.232158E-30 
0.2 4.132061E-31 1.004120E-30 1.564920E-30 
0.3 1.597903E-31 5.760574E-31 1.015851E-30 
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0.4 2.454373E-32 2.661642E-31 5.849511E-31 
0.5 7.466508E-33 7.444043E-32 2.722206E-31 
0.6 1.085586E-31 8.859188E-34 7.765935E-32 
0.7 3.278200E-31 4.550071E-32 1.267426E-33 
0.8 6.652507E-31 2.082848E-31 4.304481E-32 
0.9 1.120851E-30 4.892382E-31 2.029915E-31 
 

Table 4b- Table showing the Absolute Bias for Hussain and Shabbir (2007)RRT at 𝑛 = 100, 𝑥 = 60,𝛼 = 1, 𝛽 = 10, 𝑃1 = 0.2,
𝑃2 = 0.8 

𝜋 |BIAS|BETA |BIAS| KUMA |BIAS| GLS 

0.1 0.36445149 0.51224502 0.61464617 
0.2 0.26445149 0.41224502 0.51464617 
0.3 0.16445149 0.31224502 0.41464617 
0.4 0.06445149 0.21224502 0.31464617 
0.5 0.03554851 0.11224502 0.21464617 
0.6 0.13554851 0.01224502 0.11464617 
0.7 0.23554851 0.08775498 0.01464617 
0.8 0.33554851 0.18775498 0.08535383 
0.9 0.43554851 0.28775498 0.18535383 
 

 

 

Figure 4a- Graph showing the Mean Square Errors (MSEs) for Hussain and Shabbir (2007) RRT at 𝑛 = 100, 𝑥 = 60,𝛼 = 1, 𝛽 =
10, 𝑃1 = 0.2, 𝑃2 = 0.8 

 

 

Figure 4b- Graph showing the Absolute Bias for Hussain and Shabbir (2007) RRT at 𝑛 = 100,𝑥 = 60,𝛼 = 1, 𝛽 = 10, 𝑃1 = 0.2,
𝑃2 = 0.8 
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Comment: When 𝑛 = 100,𝑃1 = 0.1,0.2, the conventional estimator only perform  on the average when 𝜋 lies between 0.1 and 0.5 
while the proposed estimators outperform the conventional estimator  in obtaining higher and truthful responses from respondents 
with respect to stigmatized attribute when 𝜋 lies between 0.6 and 0.9 respectively. 
 

 

Table 5a- Table showing the Mean Square Errors (MSEs) for Hussain and Shabbir [9] RRT at 𝑛 = 250, 𝑥 = 150,𝛼 = 1, 𝛽 = 10,
𝑃1 = 0.1, 𝑃2 = 0.9 

𝜋 MSE BETA MSE KUMA MSE GLS 
0.1 1.291739E-74 1.566025E-74 1.830278E-74 
0.2 7.144389E-75 9.218059E-75 1.126943E-74 
0.3 3.068528E-75 4.473005E-75 5.933217E-75 
0.4 6.898031E-76 1.425088E-75 2.294140E-75 
0.5 8.214471E-78 7.430694E-77 3.522000E-76 
0.6 1.023762E-75 4.206619E-76 1.073959E-76 
0.7 3.736446E-75 2.464153E-75 1.559728E-75 
0.8 8.146266E-75 6.204780E-75 4.709196E-75 
0.9 1.425322E-74 1.164254E-74 9.555800E-75 
 

Table 5b- Table showing the Absolute Bias for Hussain and Shabbir [9]  RRT at 𝑛 = 250,𝑥 = 150,𝛼 = 1, 𝛽 = 10, 𝑃1 = 0.1,
𝑃2 = 0.9 

𝜋 |BIAS|BETA |BIAS| KUMA |BIAS| GLS 

0.1 0.39016110 0.42959180 0.46442454 
0.2 0.29016110 0.32959180 0.36442454 
0.3 0.19016110 0.22959180 0.26442454 
0.4 0.09016110 0.12959180 0.16442454 
0.5 0.00983890 0.02959180 0.06442454 
0.6 0.10983890 0.07040820 0.03557546 
0.7 0.20983890 0.17040820 0.13557546 
0.8 0.30983890 0.27040820 0.23557546 
0.9 0.40983890 0.37040820 0.33557546 
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Figure 5a- Graph showing the Mean Square Errors (MSEs) for Hussain and Shabbir [9] RRT at 𝑛 = 250,𝑥 = 150,𝛼 = 1, 𝛽 =
10, 𝑃1 = 0.1, 𝑃2 = 0.9 

 

 

Figure 5b- Graph showing the Absolute Bias for Hussain and Shabbir [9] RRT at 𝑛 = 250, 𝑥 = 150,𝛼 = 1, 𝛽 = 10, 𝑃1 = 0.1,
𝑃2 = 0.9 

 

Table 6a- Table showing the Mean Square Errors (MSEs) for Hussain and Shabbir (2007) RRT at 𝑛 = 250,𝑥 = 150,𝛼 = 1, 𝛽 =
10, 𝑃1 = 0.2, 𝑃2 = 0.8 

𝜋 MSE BETA MSE KUMA MSE GLS 
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0.1 1.248038E-74 1.717727E-74 2.161981E-74 
0.2 6.820350E-75 1.039011E-74 1.390196E-74 
0.3 2.857460E-75 5.300089E-75 7.881245E-75 
0.4 5.917069E-76 1.907201E-75 3.557667E-75 
0.5 2.308962E-77 2.114502E-76 9.312258E-76 
0.6 1.151609E-75 2.128350E-76 1.920442E-78 
0.7 3.977264E-75 1.911356E-75 7.697513E-76 
0.8 8.500055E-75 5.307013E-75 3.234718E-75 
0.9 1.471998E-74 1.039981E-74 7.396821E-75 
 

Table 6b- Table showing the Absolute Bias for Hussain and Shabbir (2007) RRT at 𝑛 = 250,𝑥 = 150,𝛼 = 1, 𝛽 = 10, 𝑃1 = 0.2,
𝑃2 = 0.8 

𝜋 |BIAS|BETA |BIAS| KUMA |BIAS| GLS 

0.1 0.38350452 0.44991840 0.50475726 
0.2 0.28350452 0.34991840 0.40475726 
0.3 0.18350452 0.24991840 0.30475726 
0.4 0.08350452 0.14991840 0.20475726 
0.5 0.01649548 0.04991840 0.10475726 
0.6 0.11649548 0.05008160 0.00475726 
0.7 0.21649548 0.15008160 0.09524274 
0.8 0.31649548 0.25008160 0.19524274 
0.9 0.41649548 0.35008160 0.29524274 
 

 

 

 

Figure 6a- Graph showing the Mean Square Errors (MSEs) for Hussain and Shabbir (2007) RRT at 𝑛 = 250, 𝑥 = 150,𝛼 = 1,
𝛽 = 10, 𝑃1 = 0.2, 𝑃2 = 0.8 
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Figure 6b- Graph showing the Absolute Bias for Hussain and Shabbir (2007) RRT at 𝑛 = 250,𝑥 = 150,𝛼 = 1, 𝛽 = 10, 𝑃1 =
0.2, 𝑃2 = 0.8 

 

Comment: When 𝑛 = 250,𝑃1 = 0.1,0.2,  the proposed estimators still perform better than  the conventional estimator  in 
obtaining higher and truthful responses from respondents with respect to stigmatized attribute when 𝜋 lies between 0.6 and 0.9 as 
evident from the tables and figures above. 
 

Discussions of Results 

We can deduce from the results presented in tables and figures 1a to 6b that the newly developed alternative Bayesian estimators 
assuming both Kumaraswamy (KUMA) and Generalised (GLS) beta prior distributions as the family of alternative beta priors 
performed better than the usual Bayesian estimator with simple beta prior distribution proposed by Hussain and Shabbir [10] in 
obtaining responses from respondents possessing stigmatized attributes. Specifically, it can be seen from the results that the usual 
Bayesian estimator with simple beta prior only performed on the average as depicted in tables and figures presented above. The 
proposed Bayesian estimators are therefore better in obtaining higher responses from respondents in any survey which asks 
sensitive questions. This shows the superiority of the newly developed alternative Bayesian estimators in obtaining responses 
from respondents possessing stigmatized attributes. 

5. Conclusion 
We have developed the alternative Bayesian estimation of the population proportion when the data were collected through the 
Randomized Response Technique proposed by Hussain and Shabbir [9] assuming both Kumaraswamy (KUMA) and Generalised 
(GLS) Beta priors as the family of alternative beta prior distributions in addition to simple Beta prior distribution used by Hussain 
and Shabbir [10]. We presented our results in tables and figures for some pre-assigned values of the parameters and population 
proportion. We observed clearly that for relatively small, moderate as well as large sample sizes, the proposed estimators 
performed significantly better than that of Hussain and Shabbir [10].  
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